Reg. No. : \square

Question Paper Code : X 20451

B.E./B.Tech. DEGREE EXAMINATIONS, NOVEMBER/DECEMBER 2020
 Fifth/Fourth Semester
 Electronics and Communication Engineering EC 6503 - TRANSMISSION LINES AND WAVE GUIDES
 (Regulations 2013)

Time : Three Hours
Maximum : 100 Marks

Smith Chart to be permitted
Answer ALL questions
PART - A

1. State the line parameters of a transmission line.
2. What is a distortionless line? Give the condition for a distortionless line.
3. Define Standing Wave Ratio.
4. A lossless line has a characteristic impedance of 400Ω. Determine the standing wave ratio if the receiving end impedance is $800+\mathrm{j} 0.0 \Omega$.
5. What is an impedance matching in stub ?
6. What are the uses of Smith Chart ?
7. Determine the value of L required by a constant-K T-section high pass filter with a cut off frequency of 1 KHz and design impedance of 600Ω.
8. What are the advantages of m-derived filters ?
9. Justify, why TM_{01} and TM_{10} modes in a rectangular waveguide do not exit.
10. An air-filled rectangular waveguide of inner dimensions 2.286×1.016 in centimeters operates in the dominant TE_{10} modes. Calculate the cut-off frequency and phase velocity of a wave in the guide at a frequency of 7 GHz .
PART - B
11. a) Derive the general transmission line equations for voltage and current at any point on a line.
b) A communication line has $\mathrm{L}=3.67 \mathrm{mH} / \mathrm{km}, \mathrm{G}=0.08 \times 10^{-6} \mho / \mathrm{km}, \mathrm{C}=0.0083 \mu \mathrm{~F} / \mathrm{km}$ and $R=10.4 \Omega / \mathrm{km}$. Determine the characteristic impedance, phase constant, velocity of propagation, wavelength, sending end current and receiving end current for given frequency $f=1000 \mathrm{~Hz}$, sending end voltage is 1 volt and transmission line length is 100 kilometers.
12. a) i) Derive an expression for the input impedance of a dissipationless line and also find the input impedance is maximum and minimum at a distance 's'.
ii) Find the sending end line impedance for a HF line having characteristic impedance of 50Ω. The line is of length (1.185) and is terminated in a load of $(110+\mathrm{j} 80) \Omega$.
(OR)
b) i) Describe an experimental set up for the determination of VSWR of an RF transmission.
ii) Briefly explain on :
1) Standing waves
2) Reflection loss.
13. a) A 300Ω transmission line is connected to a load impedance of $450-\mathrm{j} 600 \Omega$ at 10 MHz . Find the position and length of a short circuited stub required to match the line using Smith Chart.
(OR)
b) i) A load impedance of $90-\mathrm{j} 50 \Omega$ is to be matched to a line of 50Ω using single stub matching. Find the length and position of the stub.
ii) Design a quarter wave transformer to match a load of 200Ω to a source resistance of 500Ω. The operating frequency is 200 MHz .
14. a) Derive the relevant equations of m derived low pass filter and design m derived T type low pass filter to work into the load of 600Ω and cut off frequency a 5 KHz and peak attenuation at $\mathrm{f}_{\infty}=1.25 \mathrm{f}_{\mathrm{c}}$.
(OR)
b) Design a constant K . T section bandpass filter with cut off frequencies of 1 KHz and 4 KHz . The design impedance is 600 ohms .
15. a) A rectangular air-filled copper waveguide with dimension 0.9 inch $\times 0.4$ inch cross section and 12 inch length is operated at 9.2 GHz with a dominant mode. Find cut-off frequency, guide wave-length, phase velocity, characteristics impedance and the loss.
(OR)
b) i) Using Bessel function derive the TE wave components in circular wave guides.
ii) Calculate the resonant frequency of an air filled rectangular resonator of dimensions $\mathrm{a}=2 \mathrm{~cm}, \mathrm{~b}=4 \mathrm{~cm}$ and $\mathrm{d}=6 \mathrm{~cm}$ operating in TE_{101} mode.
16. a) Derive the field component of a Transverse Electric wave in rectangular wave guides.
(OR)
b) For a frequency of 10 GHz and plane separation of 5 cm in air, find the cut off frequency, cut off wavelength, phase velocity and group velocity of the wave. (15)
